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Should we impute?

I Mr. Sere won $500 as Zimbabwe’s ugliest man, mainly because
of his lack of values in his mouth:

I Mr. Goldtoothfinger’s dentures are worth more after imputation
even done in a non-realistic manner.
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Motivation

(artist: Johannes Templ, 4-5 years, commissioned work for the
conference)
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Motivation
Corrected and imputed versus non-imputed

Let’s move from the picture above to (flat) data sets . . .
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Missing values are everywhere

Missing values are present in almost all real-world data sets and
disciplines of research, not only in

I clinical studies,
I official statistics,
I sociology,
I omics sciences,
I geochemistry,
I microarray research,
I psychology,
I educational research,
I . . . ,
I for COVID-19 data,
I and even in rather exotic fields of research such as sport

sciences, crystallography, just to name a few.
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Reasons for missing values in data sets

Reasons for missing values (selection):

I failed measurement units for measurements of groundwater
quality or temperature

I lost soil samples in geochemistry, or soil samples that to
analyze anew, but are exhausted.

I respondents who don’t want to provide information, don’t
know information or skip questions because of a too long or
too complicated questionnaire.

I A patient dies and is therefore no longer in a medical study.
I Measurements are implausible and thus set to be missing.
I . . .
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Influence of missing values

I Standard statistical methods are typically designed for complete
data sets.

I Missing values can have a strong influence on resulting figures
and analysis.

I Estimators can be biased and their variance will be
underestimated if missing values and their structure are ignored.

To ensure the quality of the estimates, missing values should be
imputed using advanced methods.

Matthias Templ Keynote 7 / 40



Questions

Planning to analyze data that include missing values involves:

I Which kind of missing data are present in the data?

I What mechanism does this missing data follow?
I Which imputation strategy is appropriate for these data?
I Is there an accepted model that these data follow?
I How many missing values are present in the data set?
I What are the consequences of a sensitivity analysis, e.g. by

comparing the study results with and without imputed data?
I Is the aim to train and use a predictive model with high

predictive power? Or is the statistical uncertainty in main
focus? Is there a need for multiple imputation due to these
facts, or is a single imputation the better, more practical way?

I Are there project-related time constraints for the analysis and
imputation of missing values?
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Difficulties

I outliers may influence a (classical) imputation method so that
the imputations became arbitrary.

I imputation of data sets with mixed scaled variables. For
example, a data set contains a mix of continuous,
semi-continuous, binary, nominal, ordinal or count variables.

I special kind of data sets, e.g., compositional data, whereby
other methods are applied than for standard data sets.

I selection of the imputation method

Analyse the structure of missing values before impute missing values
. . .
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Properties of missing values

I Missing At Random (MAR): the reason why a random value
is missing from a variable can be explained from the other
variables in a data set.
I Example: The more dangerous pretator, the more likely that the

measurement of the length of the dreaming phase per day of a
mammal fails.

I Missing Completely At Random (MCAR): there is nothing
fishy, the missing is absolutely random.
I Example: Respondents may decide to omit a question due to

loss of interest.
I Missing Not At Random (MNAR): reasons of missingness

can be not explained with the help of your data set.
I Example: The weight of heavy weighted mammals cannot be

measured.
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Properties of missing values

The detection of non-MCAR situations for a variable of interest or
to check for any variable with missing values in a dataset has a long
history, starting with Little (1988) who formulated the first test for
MCAR. Various extensions have been made, for example, by Li
(2013), Li (2010) and Bojinov, Pillai, and Rubin (2017).

These tests are very sensitive to non-normal data and outliers.

I M. Templ, Alfons, and Filzmoser (2012) :

Much better is to use explanatory data analysis to
assess the structure of missing values.
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Visualization of missing values
Learn relationships: learn about the relationships of the variables

in your data set(s) even they include missing values.

Observe particularities: explore data with missing values for the
dectection of possible problems, such as outliers or
skewness of variables, and other peculiarities.

Learn special structures of missing values: learn about the
incomplete information in the data and to identify
possible structures of the missing values.

Support decisions on data pre-preprocessing: decide how to handle
the data, either whether to contact some respondents
again or perform measurements again, calibrate parts
of the data for missing values, or perform imputation.

Selection of an imputation method: Choosing an inappropriate
imputation method can destroy the multivariate
relationships in the data and biased results may result.
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Visualization: summaries
library("VIM"); data("sleep")
a <- aggr(sleep, plot = FALSE); plot(a, numbers = TRUE)
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Visualization: detecting MAR situations using the matrix
plot
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Figure 1: Matrix plot of selected variables of the subset of the sleep data
sorted by variable BodyWgt (body weight of mammals)
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Visualization: detecting MAR situations using histograms
I Distribution of variable Span (life span of mammals)
I Subset in red: Distribution of variable Span that includes

missing values in covariates
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Figure 2: Histogram of variable span highlighting missing values in
the remaining variables.
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Visualization: detecting MAR situations using spinnograms
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Figure 3: Spinogram of Span with highlighting based on variable Dream.
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Visualization: detecting MAR situations using barcharts
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Figure 4: Barplot of variable Danger with highlighting based on variable
Sleep. Matthias Templ Keynote 17 / 40



Visualization: detecting MAR situations using spineplots
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Figure 5: Barplot of variable Danger with highlighting based on variable
Sleep. Matthias Templ Keynote 18 / 40



Visualization: detecting MAR situations using boxplots
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Figure 6: Parallel boxplots to observe MAR situations for a selected
continuous variable.
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Visualization: detecting MAR situations using scatterplots
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Visualization

I Multiple scatterplots with missing values
I Parallel coordinate plots with missing information
I Mosaic plots with missing values
I Maps with missing values
I . . .

−→ many more visualization tools included in R package VIM (M.
Templ et al. 2019)
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Imputation

I Deductive methods using logical rules
I Univariate methods
I Nearest-neighbor methods
I Distributional and covariance-based methods
I Model-based methods
I Tree-based methods
I Neural networks
I Methods for time series
I Methods for compositional data

and always a decision for single or multiple imputation
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Univariate methods

Don’t apply them, see e.g. imputation with the mean:
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Regression-based methods
Do not use the expected values for imputation:
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Figure 7: Imputation using point estimates of predictions from a model.Matthias Templ Keynote 24 / 40



Regression-based methods
Add stochastic noise (draw from predictive distribution, add normal
noise to expected values, or draw from residuals)
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Regression-based methods
Add stochastic noise more than once (multiple imputation). Do
this, e.g. 10 times to result in 10 imputed data sets.
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Selected imputation methods in R
Imputation methods in VIM (M. Templ et al. 2019)
I hotdeck() for huge data sets
I kNN() of mixed scaled variables
I regressionImp()
I irmi() for robust (“multiple’ ’) EM-based imputation and

potentially mixed scaled variables (M. Templ, Kowarik, and
Filzmoser 2011)

(Multiple) Imputation methods in other packages (selection)
I mi in package mi (Gelman and Hill 2011)
I mice in package mice (van Buuren and Groothuis-Oudshoorn

2011), especially the pmm (predictive mean matching) method
I missRanger (Mayer 2019) for imputation with random forests
I missMDA (Josse and Husson 2016) for PCA-methods
I deepImp for using ANN’s (Matthias Templ 2021)
I impCoda in robCompositions (Filzmoser, Hron, and Templ

2018) for imputing compositional data
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Non-robust Imputation with mi, mice, iveware, . . .

Storytelling based on a 2-dim toy data set . . .
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Imputation with VIM (method kNN)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

−2 0 2 4 6 8 10

−
3

−
2

−
1

0
1

2

x

y

● original data
imputed data values

tolerance ellipse from original data
tolerance ellipse from imputed data

Matthias Templ Keynote 29 / 40



Robust Imputation with VIM (method irmi)
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Non-robust Imputation with mi, mice, iveware, . . .
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Imputation with VIM (method kNN)
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Robust Imputation with VIM (method irmi)
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Non-robust Imputation with mi, mice, iveware, . . .
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Imputation with VIM (method kNN)
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Robust Imputation with VIM (method irmi)
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MSE

I 100 obs. from a bivariate normal and a bivariate normal + a
few moderate outliers.

I Moderate MAR situation.

method mvn mvn out

compl. case anal. 0.01220 0.01230
knn 0.01072 0.01104
imi 0.01071 0.01397
irmi robust 0.01002 0.01024
irmi mi robust 0.00010 0.00010
missForest 0.00999 0.01171
mice 0.02366 0.14096
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So what is IRMI doing?

I Missing values are intitialized (using kNN)
I Inner loop imputes (updates) one variable after each other

using robust regression methods and (robust) stochastic noise,
depending on the scale of the variable to impute (binary,
categorical, continuous, semi-continuous, count, . . . )

I Outer loop: repeat the imputations until convergence
I Multiple imputation
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After imputation
Use the same plots as before to check the quality of imputations,
e.g.
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Figure 8: {Marginplot of the variables Air.Temp and Humidity of the tao
data set

Matthias Templ Keynote 39 / 40



Conclusions

I Imputation is an important data pre-processing step
I Essential to have knowledge about imputation of missing values
I Missing values can change your results of your study!

I if not treated: potential bias in estimates
I if treated not well: potential bias in estimates and bias in the

variance of the estimates
I Make a picture of the distribution of missing values in your

data set first
I Use sophisticated imputation methods

I there are much more, for special cases (e.g. time series,
compositional data, . . . )

Software is available, e.g. R package VIM (M. Templ, Alfons, and
Filzmoser 2012; M. Templ et al. 2019; Kowarik and Templ 2016)
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